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5 A BRANCH-AND-PRICE ALGORITHM FOR THE P-

MEDIAN DISTRICTING PROBLEM – ONGOING AND

PLANNED WORK

Abstract. The p-Median Districting Problem is the most prevalent problem in district-

ing domains. Given a planar graph G, it asks for a p-partition of G into connected and

balanced components called districts, such that the partition’s compactness, given by

its p-median cost, is minimized. In this chapter we present our preliminary work

on an exact branch-and-price algorithm to solve this problem. It uses a set parti-

tioning formulation over the set of all feasible districts, whose linear relaxation is

known to yield tighter dual bounds than standard formulations. We extend the previ-

ous method of Mehrotra et al. [155], who solved this model with column generation

within a branch-and-price framework, with several improvements. These include an

exact solution to the pricing subproblem, Lagrangean-based dual bounding and vari-

able fixing techniques, early branching strategies and an improved primal solution.

Experiments show that our method produces better root lower bounds than other for-

mulations, but that column generation struggles with convergence and degeneracy,

which ultimately make the proposed branch-and-price worse than existing solutions.

We discuss how we intend to address these issues.

5.1 Introduction

In this chapter we present our ongoing work on an exact branch-and-price al-

gorithm for the p-Median Districting Problem (PMDP). We have defined the PMDP

in Section 2.3.2. We chose this problem for three reasons. First, it is also considered

by Mehrotra et al. [155], Salazar-Aguilar et al. [197] and Validi et al. [222], who

have broken new grounds in districting problems from a MIP perspective and whose

methods we build upon. Second, as we saw in Section 2.3.2 p-median as a com-
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pactness function has been used widely across several domains, and has a number of

desired properties such as favoring connectivity, inducing low routing costs, and being

responsive to changes. Third, the problem has no domain-specific constraints, which

allows us to strive for generality and maintain our focus on the methods rather than

the application. For this reason, here we also consider a single balancing attribute.

We consider the set partitioning formulation of Garfinkel and Nemhauser [78],

which we have introduced in Section 2.4.1.3. Rather than an assignment of units

to medians, as the Hess model (2.10), it seeks a partition of V from elements of

the set F = {V ′ ⊆ V | connected(V ′) ∧ L ⩽ w(V ′) ⩽ U } of connected and balanced

districts. (Recall that L and U are the lower and upper balancing limits.) Let variables

zj ∈ {0,1}F be such that

zj =

1, if district j ∈ F is selected in the final districting plan,

0, otherwise,
(5.1)

and let cj = Cpm(j) = minc∈j
∑
i∈jdic be the p-median cost function for district j ∈ F.

The set partitioning model is then defined as:

minimize
∑
j∈F
zjcj (5.2a)

subject to
∑
j∈F
zj = p, (5.2b)

∑
j∈F | i∈j

zj = 1 ∀ i ∈ V, (5.2c)

zj ∈ {0,1} ∀ j ∈ F. (5.2d)

Although this formulation has been used by several authors [78, 155, 46, 17, 99,

161], nearly all proposed methods either consider a heuristically-generated set of dis-

tricts in place of F, or use heuristic pruning rules to solve the model, which makes

the methods not exact. To our knowledge, the only exact method on a related formu-

lation is from Bender et al. [16], who consider a multi-period districting problem and

solve it through branch-and-price. However, in that problem the union of all districts

is not required to be a partition of V, and districts need not be connected, which

makes it fundamentally different from the PMDP.

Mehrotra et al. [155] have used Garfinkel and Nemhauser [78]’s model in a branch-

and-price to solve the PMDP. Because the model has exponentially many variables,

they solved its linear relaxation by column generation. However, because the pricing
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subproblem of finding a minimum-cost, connected and balanced district is computa-

tionally difficult, Mehrotra et al. [155] solved a simplified version of it which made

their branch-and-price not exact.

In this chapter, we revisit the approach of Mehrotra et al. [155] with the goal of

proposing an exact branch-and-price method. Since their work, a number of tech-

niques have become available which we believe make this possible. They include:

• efficient ways to enforce connectivity in districting models, studied by Salazar-

Aguilar et al. [197] and Validi et al. [222] and which make the pricing subprob-

lem tractable;

• the Lagrangean-based variable fixing approach of Validi et al. [222], which fixes

about 90% of variables in the Hess model for instances of fewer than 1000 units,

and further eases the burden of the pricing subproblem;

• high-quality heuristic solvers for the PMDP proposed by Validi et al. [222], Ríos-

Mercado et al. [193] and ourselves in Chapter 3, which we use both as primal

bounds for branch-and-price and to seed initial columns for column generation;

• techniques such as Lagrangean lower bounding for early termination, dual sta-

bilization to mitigate the tailing-off effect, early branching and effective column

management techniques, which have appeared as the literature on column gen-

eration matured [150, 223, 52]; and

• valid inequalities for knapsack constraints such as lifted cover inequalities,

which have been studied at length [98] and could be used as cutting planes

in a branch-and-cut-and-price method.

In the following sections we present in detail how we leverage some of these tech-

niques to propose an improved, exact branch-and-price. Then, in Section 5.3 we

report on early experiments that show that Model (5.2) produces much better lower

bounds than that of Hess et al. [108]. Despite this, we find that column genera-

tion converges slowly and struggles with degeneracy, and therefore the proposed

branch-and-price requires much more effort than a commercial solver running the

Hess model. In Section 5.4 we present our plans to address this.

5.2 Proposed branch-and-price algorithm

We use the solution to the linear relaxation of Model (5.2), which we shall call

the linear master problem (LMP), as dual bound in a branch-and-bound algorithm.

The LMP can be obtained by substituting constraints (5.2d) with constraints 0 ⩽ zj ⩽
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1 ∀j ∈ F. Since F is exponentially-sized, we solve the LMP by column generation

(Section 5.2.2).

Iteratively, we expand the next node in the branch-and-bound tree and solve its

corresponding relaxation. If the optimal relaxed cost is higher than the cost of the

incumbent, the node is fathomed. If the optimal solution to the LMP is fractional,

we then proceed to generate two child branches that will solve subproblems with

restricted domains. We explain our branching strategy in the next section. Otherwise,

if it is not fractional, we update the incumbent and do not branch, since further

branching cannot improve the solution. We expand nodes depth-first.

The initial incumbent solution is obtained by running the location-allocation heuris-

tic of Validi et al. [222]. We chose this heuristic because it performed better in early

tests for the real-world instances of Validi et al. [222] and Moreno et al. [161], which

were our starting point. However, more experimental work is needed to determine

if this heuristic is generally better than our heuristic of Chapter 3 or that of Ríos-

Mercado et al. [193] for a broader instance set.

5.2.1 Branching

We use a variation of Ryan-Foster branching [196], similar to the one used

by Mehrotra et al. [155]. It branches on the assignment of a pair of basic units

{ i, j }, with one branch forcing i and j to be assigned to the same district and the other

forcing them to be assigned to different districts. Let Bsame be the set of unit pairs

which have been fixed to the same district, and Bdiff be the set of unit pairs which

have been fixed to different districts. In the Hess model, this would translate to cuts

of the form

xik = xjk ∀{ i, j } ∈ Bsame, k ∈ V, (5.3)

xik+xjk ⩽ 1 ∀{ i, j } ∈ Bdiff, k ∈ V. (5.4)

Since they are in general not difficult to treat integrally, we include these cuts in the

pricing subproblem rather than the RLMP. Namely, the following cuts are added to

each pricing subproblem:

yi = yj ∀{ i, j } ∈ Bsame (5.5)

yi+yj ⩽ 1 ∀{ i, j } ∈ Bdiff. (5.6)
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At the pricing subproblem rooted at unit k this leads to variable fixes yi = 1 for each

{ i,k } ∈ Bsame, and yi = 0 for each { i,k } ∈ Bdiff.

To choose units i and j to be branched on, given fractional solution zf ∈Rk, Mehro-

tra et al. [155] selected first the unit i with the highest wi in the most fractional

column s1 ∈ [k]. Then, they selected the most fractional column s2 ̸= s1 such that

i ∈ s2, and chose some unit j such that [j ∈ s1] ̸= [j ∈ s2]. Note that pair (s1,s2) must

exist, since i) if the solution is not fractional no branching occurs and ii) if unit i is

covered partially, constraints (5.2c) force multiple columns to cover i.

In the strategy above, units i and j are not necessarily neighbors in G. While Bdiff
fixes simply induce disjoint assignment constraints on the pricing subproblem, having

a set of non-contiguous Bsame fixes can make pricing significantly harder to solve,

especially heuristically, since the selection of a unit v becomes conditioned to also

finding a subset of V which connects {u | {u,v } ∈ Bsame}. To mitigate this, we propose

a branching strategy that branches only on neighboring units. Namely, given the

most fractional column s1, we branch on units i, j such that i ∈ N(j), i ∈ s1, j ̸= s1,

and wi+wj is maximum. Such a pair must always exist unless p = 1, since δ(S) ̸= ∅
for any S ̸= V.

This strategy ensures that the subgraph induced by Vsame =
⋃
p∈Bsame

p has no

connected component of size 1. At any branch-and-bound node the current branching

decisions therefore induce a modified graph Grf = (Vrf,Erf) that merges sets of units

fixed to Bsame into a single unit, and removes edges between units fixed to Bdiff. Let

C be the set of connected components of G(Vsame). Namely, we have

Vrf = (V \Vsame)∪
⋃
c∈C

vc

for new units vc associated with each component c ∈ C, and

Erf = E(Vrf)\Bdiff ∪ { { i,vc } | i ∈ Vrf, c ∈ C, ∃k ∈ c : { i,k } ∈ E\Bdiff }.

For each new unit vc, c ∈ C we set its weight as wvc = w(c), its distances to

units i ∈ V as divc = dvci =
∑
k∈cdik, and distances to other units v ′c, c

′ ∈ C as

dvc,v ′c =
∑
k∈c

∑
k ′∈c ′ dkk ′. After every branching decision set C is updated in amor-

tized cost O(α(n)) using a union-find data structure, where α is the inverse Acker-

mann function [74].
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5.2.1.1 Domain propagation and further pruning

After branching we use domain propagation to try and generate additional cuts or

prune the branch-and-bound node, when possible. To this end we apply, in order, the

following tests.

First, if wi+wj > U for any { i, j } ∈ Erf, add { i, j } to Bdiff. Otherwise, this would

lead to a district that would violate upper balancing constraints.

Second, for each articulation node i ∈ Vrf let A= {a1, . . . ,a|A| } be the disjoint parts

of the articulation such that, for every {aj,ak }⊆ A, no path in Grf exists from a unit

in aj to a unit in ak that does not pass through i. Let also AL =
⋃
a∈A|w(a)<La be the

set of units in parts that weigh less than L. In a feasible solution each such part must

be joined with i. Therefore, if wi+w(AL) > U or if {i, j} ∈ Bdiff for any j ∈ AL, we

prune this branch-and-bound node. Otherwise, for each j ∈AL we add { i, j } to Bsame.

Third, note that graph Grf is not necessarily connected, since Bdiff branches re-

move edges from Erf, and that no district can have units in two different connected

components. Let B = {b1, . . . ,b|B| } be the set of connected components of Grf. Then,

a feasible solution must contain anywhere between ⌈w(b)/U⌉ and ⌊w(b)/L⌋ districts

per connected component b ∈ B. This leads to the feasibility problem

exists x (5.7a)

subject to
∑
b∈B

xb = p, (5.7b)

⌈w(b)/U⌉⩽ xb ⩽ ⌊w(b)/L⌋ ∀b ∈ B, (5.7c)

x ∈ N|B|, (5.7d)

with variable xb denoting the number of districts placed in connected component b.

If Model (5.7) is not feasible, then there is no way to distribute p districts over the

components B, and the branch-and-bound node can be pruned. Model (5.7) can be

solved by computing feasible(0,0) in the recurrence

feasible(i, j) =


true if i= |B|∧ j= p,

false if i= |B|∧ j ̸= p,∨
⌈w(bi)/U⌉⩽k⩽⌊w(bi)/L⌋ feasible(i+1, j+k) otherwise.

(5.8)

This can be done in O(p|B|) time by dynamic programming on arguments i and j.

Unfortunately, in early experiments we found that these domain propagation tech-

niques were not effective. In nearly all instances the granularity of unit weights is too
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fine compared to bounds L and U, and so these rules only activate at deep branches

where Bsame induces high weights and Grf is connectivity-restricted by Bdiff. How-

ever, branch-and-bound nodes seldom reached such depths, since they were either

fathomed or not branched due to integrality of the LMP solution much earlier.

5.2.2 Solving the LMP with column generation

We use column generation to solve the LMP. For an overview on column generation,

see Lübbecke and Desrosiers [150]. Iteratively, it solves the restricted linear master

problem (RLMP) given by

minimize
∑
j∈J
zjcj (5.9a)

subject to
∑
j∈J
zj = p, (5.9b)

∑
j∈J | i∈j

zj = 1 ∀ i ∈ V, (5.9c)

0 ⩽ zj ⩽ 1 ∀ j ∈ J, (5.9d)

which is defined over a set of feasible districts J ⊂ F. Then, it searches for new

columns (districts) of negative reduced cost from F \ J to include in J. If no such

columns exist, then the optimal solution to the RLMP is also optimal for the LMP, and

the algorithm stops.

Let π0 be the dual variable associated with constraint (5.9b), and π1 ∈ Rn be the

dual variable vector associated with constraints (5.9c). Then, the reduced cost of

including column zj, j∈ J is given by cj−
∑
i∈jπ

1
i −π0. To find a column with minimum

reduced cost, the pricing problem

minimize
u∈V

−π0 +
∑

i∈V\{u}
yi(diu−π

1
i ) (5.10a)

subject to L⩽
∑
i∈V
wiyi ⩽U, (5.10b)

y induces a connected subgraph of G, (5.10c)

yu = 1, (5.10d)

yi ∈ {0,1} ∀ i ∈ V \ {u}, (5.10e)

is solved. It consists of n independent subproblems, one for each u ∈ V, and its

optimal solution can be obtained by taking the solution y∗ of minimum value among
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the subproblems. If it has negative value, column generation adds the column { i ∈ V |

y∗i = 1 } to the RLMP.

Pricing does not need to be solved exactly at each iteration: as long as negative

reduced cost columns are found, even if heuristically, column generation converges

towards the optimal solution [52]. Therefore, to save time we adopt a four-staged

approach to generating new columns:

1. to search for columns in a global column pool shared across all branch-and-

bound nodes;

2. to search for columns using a simple semi-greedy multistart heuristic to look for

columns quickly, without a significant time investment;

3. to run the matheuristic of Mehrotra et al. [155]’s, which solves Model (5.10)

with restricted connectivity constraints;

4. to solve Model (5.10) optimally by branch-and-bound.

At any stage, if negative reduced cost columns are found, we add them to the RLMP

and reoptimize it, then go back to stage 1. This is akin to a variable neighborhood

search [103] through P(F) space, but without the randomization step. In this way,

pricing is only solved optimally at the last step when all heuristics fail, or in order to

prove that the RLMP is optimal by showing no more negative reduced cost columns

exist. Solving the RLMP and thus updating duals π0 and π1 is usually a better ap-

proach than to solve pricing to optimality every time, since to find optimal solutions

is a bottleneck. Whenever possible we add multiple new columns per iteration, which

is generally recommended [150].

Algorithm 14 outlines our column generation method. In the following sections we

describe how we obtain set J initially, then detail each of the four stages above. We

also explain early branching and Lagrangean bounding techniques we have used.

As a note, we have also experimented with the covering version of Model (5.9),

which substitutes constraints (5.9c) by
∑
j∈J | i∈j zj ⩾ 1 ∀ i ∈ V. However, in practice

there was little difference in performance between the two formulations.

5.2.2.1 Initial column set and managing infeasible columns

Set J in the root node of branch-and-bound is initialized with the districts of the

initial primal solution. If the primal solution is feasible, then the introduced columns

will be a feasible solution to the RLMP since they are a p-partition of V. If it is not

feasible, however, to induce feasibility we introduce p artificial columns a1, . . . ,ap
such that ai = V and cai =∞. Because of their high cost, these columns are priced
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Algorithm 14 Solving the LMP by column generation.

Input: a branch-and-bound node with column set J, and the current incumbent solu-
tion S.

Output: the LMP solution value.
1: if we are at the root node of branch-and-bound then
2: J← {Si | i ∈ P }
3: L←−∞
4: repeat
5: solve Model (5.9) with columns J to obtain duals π0,π1 and upper bound υ
6: if υ < Cpm(S) then ▷ early branching, see Section 5.2.5
7: return L

8: C← searchColumnPool(π0,π1)
9: if C= ∅ then

10: C← greedyMultistart(π0,π1)
11: if C= ∅ then
12: C←matheuristic(π0,π1)
13: if C= ∅ then
14: C,τ← exactPricing(π0,π1)
15: if C= ∅ then
16: return υ ▷ υ is optimal
17: L← solveLagrangean(τ,π0,π1) ▷ see Section 5.2.3
18: if L+ϵ⩾ υ or L⩾ Cpm(S) then
19: return L

20: lagrangeanFixing(τ,π0,π1) ▷ see Section 5.2.3.1
21: J← J∪ {C }
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out immediately in the first iterations of column generation.

Intermediate branch-and-bound nodes inherit the set of columns from their parent,

except columns which violate the branching decision (5.5) or (5.6). Because instan-

tiating data structures for the RLMP and the pricing IPs is computationally expensive,

in our implementation upon branching one child receives the parent’s data structures

and the other child has them generated anew. In the former, violated columns zj
are then disabled by setting cj =∞, while in the latter they are never created. This

leads to violated columns being removed from the model after every two branches,

on average.

5.2.2.2 Column pool

We maintain a global column pool P ⊆ F shared by all branch-and-bound nodes,

comprising all negative reduced cost columns generated so far. At each iteration, be-

fore attempting to generate new columns we first scan P looking for columns with

negative reduced cost w.r.t. current duals π0,π1 and are feasible w.r.t. the node’s

branching decisions. All such columns are then added to the RLMP.

For each column j ∈ P we cache its p-median cost Cpm(j). Then, j’s reduced cost

rc(j) =Cpm(j)−π
0−

∑
i∈jπ

1
i can be computed inO(|j|) time. We further speed this up

by keeping a hash table of the current column set J, and testing whether a candidate

j∈P is in it. If this is the case, then by definition rc(j)⩾ 0. While this test has the same

worst-case runtime of O(|j|), in practice it is worth doing. To test whether j respects

branching decisions, we also maintain a boolean vector hji = [i ∈ j] for each j ∈ P, so

that feasibility can be checked in O(|Bsame|+ |Bdiff|) by testing whether hju = hjv for

{u,v } ∈ Bsame and hju+h
j
v ⩽ 1 for {u,v } ∈ Bdiff.

5.2.2.3 Greedy multistart heuristic

If no more negative reduced cost columns are found in P, we first look for new

columns with a fast multistart semi-greedy heuristic. For each “root” unit u ∈ V we

repeat the heuristic itergr times, and so it is executed n · itergr times in total, where

itergr is a parameter. Each time the heuristic results in a negative reduced cost col-

umn, we add it to the RLMP.

Given root unit u ∈ V, let v ∈ Vrf be the unit which accounts for u in Grf. Then, a

greedy solution seeded at v is built as follows.

1. Start with solution S = {v }, exclusion set B = { i | { i,v } ∈ Bdiff }, and candidate
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set K=Nrf(v). Here, Nrf(v) = { i | { i,v } ∈ Erf } denotes the neighborhood of v in

Grf, and we loosely extend the definition of Bdiff to include units in Grf.

2. Remove from K all units k such that either i) k ∈ B, ii) w(S)+wk > U, or iii)

w(S) ⩾ L∧dkv−πk > 0. Then, if K = ∅, stop and return S. Note that test iii)

disallows adding positive cost units if the solution already weighs L, since they

cannot improve the solution and the heuristic does not remove units from S,

and that we stop adding units before w(S) reaches U.

3. Move one randomly-chosen unit k such that (f(kbest)−f(k))/f(kbest)⩽αgr from

K to S, where f(i)= (πi−div)/wi, kbest= argmink∈K f(k), and αgr is a parameter.

Fitness function f gives preference to assignments with lowest reduced costs

contribution over weight ratios, since they have the highest impact in the final

reduced cost.

4. Add to K any neighbors of k which are not in K∪S, and add to B any unit i such

that { i,k } ∈ Bdiff. Go to step 2.

The full method is shown in Algorithm 15. Note that connectivity is guaranteed,

since we only consider the addition of neighbor units. In our implementation, we

have fixed αgr = 0.2 and itergr = 5.

Algorithm 15 Greedy multistart heuristic for pricing.

Input: a dual vector π ∈ Rn.
1: for u ∈ V do
2: for itergr iterations do
3: v← vc : c ∈ C,u ∈ c
4: S← {v }

5: K←Nrf(v)
6: B← { i | { i,v } ∈ Bdiff }
7: while K ̸= ∅ do
8: kbest← argmink∈K f(k)
9: k← a random element from {k ∈ V | (f(kbest)− f(k))/f(kbest)⩽ αgr }

10: S← S∪ {k }
11: B← B∪ { i ∈ Vrf | {i,k} ∈ Bdiff }
12: K← (K∪Nrf(k))\ (S∪B)
13: K← K\ {k ∈ Vrf |w(S)+wk >U∨ (w(S)⩾ L∧dkv−πk > 0) }
14: add column S to the RLMP if L⩽w(S)⩽U.

5.2.2.4 Mehrotra et al. [155]’s matheuristic

If the greedy heuristic above does not find columns of negative reduced cost, in

a second step we run the matheuristic proposed by Mehrotra et al. [155] for the
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pricing problem. It solves by branch-and-bound Model (5.10) with connectivity con-

straints (5.10c) replaced by tree-like constraints

yi ⩽
∑

k∈N(i) |sku<siu

yk ∀ i ∈ V \ {u} (5.11)

for given center unit u. Here, sij denotes the length of the shortest path (in hops)

from unit i to unit u in G. These constraints ensure that unit i ∈ V can only be

selected if some neighbor k ∈N(i) closer to u than i is also selected, and thus force

solutions to be shortest-path trees rooted at u. Since Model (5.10) decomposes into

n independent subproblems, one for each u, we solve the subproblems separately

and add to the RLMP all solutions which have negative reduced cost. Since columns

of non-negative reduced cost are not useful, during branch-and-bound we prune any

nodes with non-negative lower bounds.

Because constraints (5.11) force new columns to be shortest-path trees from u, they

may exclude feasible columns which are not. This leads to a restricted problem that

is significantly easier than solving Model (5.10) with e.g. flow or cutset connectivity

constraints. In practice, we find that this restricted model is better at generating neg-

ative reduced cost columns than the greedy heuristic, but at a higher computational

cost. This is why we use it as an intermediary solution between the simple greedy

heuristic and the exact solution.

Mehrotra et al. [155] made a further simplification to their heuristic: to fix yi = 0

for any i such that siu > δ, for parameter δ (in the original paper, δ was fixed to 3).

In early experiments, however, we found that doing this did not bring any significant

performance benefits, and thus to avoid introducing a parameter that probably does

not generalize to multiple instance sizes, we do not use this simplification.

5.2.2.5 Exact pricing

Finally, we solve Model (5.10) exactly by branch-and-bound. Like the previous

section, because Model (5.10) decomposes into n independent subproblems, we solve

each one separately and add to the RLMP all solutions of negative cost. In each

problem, we prune intermediate nodes with non-negative lower bounds, since they

will never result in a negative reduced cost column.

In the pricing subproblem we model connectivity with a single-commodity flow

approach, which we have reviewed in Section 2.4.1.4. Given reference unit u, it uses
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constraints

∑
j∈N(i)

(fij− fji) = yi ∀ i ∈ V \ {u }, (5.12a)

∑
j∈N(i)

fij ⩽ (n−1)yi ∀ i ∈ V \ {u }, (5.12b)

∑
j∈N(u)

fuj = 0, (5.12c)

fij ⩾ 0 ∀(i, j) ∈A, (5.12d)

where A is the arc-directed version of E.

We have also experimented to treat connectivity with the subtour elimination ap-

proach of constraints (2.24) and the cutset approach of (2.25) (see Section 2.4.1.4 for

an overview). In practice, however, we found that in many subproblems branch-and-

bound required a huge number of lazy cuts and sometimes did not terminate within

the time limit. We think this is because formulations based on lazy cuts are well-suited

when the objective function is correlated to connectivity, such as p-median, since the

expected number of cuts is small, but not otherwise. Because Model (5.10)’s objec-

tive subtracts dual values, it can have negative coefficients and therefore its optimal

solution is less likely to be naturally connected.

5.2.3 Lagrangean dual bounding

Consider the following model obtained by relaxing partition constraints (2.10c) of

the Hess model (2.10) in a Lagrangean way:

minimize
∑
i,j∈V

xijdij+
∑
i∈V
λi

(
1−

∑
j∈V
xij

)
(5.13a)

subject to
∑
j∈V
xjj = p, (5.13b)

(2.10d)to (2.10f),

where λ ∈ Rn is the Lagrangean multiplier vector for the dualized constraints. Com-

bining like terms, we can rewrite objective (5.13a) as

∑
i,j∈V

(
xij(dij−λi)

)
+
∑
i∈V
λi. (5.14)
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Observe that, for fixed j, constraints (2.10d) to (2.10f) and the first summation

of (5.14) amount to an independent subproblem which is equivalent to solving the

pricing subproblem (5.10) for center u = j, with π1
i = λi and π0 = 0. Let τj be the

optimal solution to this subproblem. Then, Model (5.13) equates to

minimize
∑
j∈V
xjjτj+

∑
i∈V
π1
i (5.15a)

subject to
∑
j∈V
xjj = p, (5.15b)

xjj ∈ {0,1 } ∀ j ∈ V, (5.15c)

and can be solved in O(n logp) time by setting xjj = 1 for the p units j with minimal

τj. This means that when we solve the pricing problem optimally and obtain τj for

j ∈ V, we can compute Model (5.15) to obtain a valid lower bound L for the LMP.

We use lower bound L to halt column generation early, in two ways. First, given the

current incumbent value u∗ we stop if L⩾u∗, since this means the branch-and-bound

node will be fathomed. Second, since the current solution υ to the RLMP is an upper

bound for the LMP, we define a maximum gap ϵ (in our implementation, we use

ϵ = 10−4) and stop iterating if L+ϵ ⩾ υ, then return L as a dual bound. This helps

alleviate the tailing-off effect which is a common issue in column generation [150],

but as a downside it requires us to branch even if the current solution to the RLMP

is integral, since we cannot prove its optimality without solving column generation

until the end.

5.2.3.1 Variable fixing

We also use Model (5.15) to prove whether an optimal solution must (or must not)

contain columns with certain centers. This is done as follows. Let i1, . . . , in be such

that τij ⩽ τij+1 for j ∈ [n−1]. Then, if

τik +
∑

j∈[p−1]

τij +
∑
j∈V
π1
j > u

∗ (5.16)

for k ∈ [n] \ [p] and primal bound u∗, we can fix xkk = 0 in the Hess model. In the

RLMP, this amounts to setting

zj = 0 ∀ j ∈ J(k), (5.17)
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where J(k) = { j ∈ J | cpm(j) = k }. This also means we can safely skip solving the

pricing subproblem rooted at u = k, since any feasible column it yields can also be

obtained from other subproblems.

Similarly, if

−τik +
∑

j∈[p+1]

τij +
∑
j∈V
π1
j > u

∗ (5.18)

for k ∈ [p], we can fix xkk = 1 in the Hess model. In the RLMP, this amounts to adding

constraint ∑
j∈J(k)

zj = 1. (5.19)

5.2.4 Column management and optimal medians

All three pricing solutions (the greedy heuristic, the matheuristic and exact pricing)

consider n subproblems with a fixed median, or root. Note, however, that given root

j ∈ V and column i ∈ F generated for j by one of these algorithms, it can be so that

j ̸= cpm(i), i.e. j is not the optimal median for i. Therefore, before adding column i to

the RLMP we compute its optimal median in O(|i|2) time.

A problem arises when we fix out medians, which we do during Lagrangean bound-

ing and also during instance pre-processing, as we shall see in Section 5.3. If the

optimal median k= cpm(i) is such that xkk is fixed to 0, we compute i’s cost with the

best available median. Namely, the objective coefficient of column i is computed as

ci = min
{∑
u∈i
duj | j ∈ i, xjj is not fixed to 0

}
. (5.20)

When variable xkk is fixed to 0, we also update the cost of all existing columns which

use k as median.

The main drawback of this strategy is that it allows columns in the RLMP that

will never be selected in an optimal integer solution, even if they are penalized by

higher costs. Another issue is that, in practice, the same column often ends up being

generated by multiple pricing subproblems of fixed medians, which is unnecessarily

repeated work.

One way to address this is to never generate columns with suboptimal centers in

the first place. We have experimented with this by forcing the pricing subproblem

with root j to only generate columns where j is the optimal median. In Model (5.10),
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we did this by adding constraints

∑
i∈V
dijyi ⩽M(1−yk)+

∑
i∈V
dikyi ∀k ∈ V \ {j}, (5.21)

where M is a large constant. They force that, if k ∈ V \ {j} is selected, it cannot be a

better median than j. Unfortunately, we found that these constraints made the models

too hard to solve, and column generation was intractable. We also experimented with

adding these constraints lazily, with little effect. Still, we think the convergence of

column generation could be improved if there would be an efficient way to enforce

optimal medians.

5.2.5 Early branching

Despite our use of heuristics to speed up column generation and of Lagrangean

bounds to combat tailing-off, we find that column generation still takes too long to

terminate. We have identified two reasons for this. First, due to degeneracy column

generation often gets stuck at plateaus of equal solution value over several iterations,

which causes slow convergence. We discuss this issue in more detail in Section 5.3.4.

Second, the exact pricing solver sometimes encounters difficult subproblems whose

solution requires a substantial number of branch-and-bound nodes, and this tends to

dominate the running time.

In an attempt to mitigate these issues, under certain circumstances we stop column

generation early and branch. The first is if the RLMP’s solution value υ is lower

than the incumbent value u∗, i.e. when we know the branch-and-bound node will no

longer be fathomed. The second is if any call to exact pricing takes longer than a time

limit, which we have fixed to 10 seconds. This addresses the first issue above.

The downside of branching early is that we forgo information on the optimal so-

lution to the LMP which could be used to make better branching decisions, or even

not branch at all if that solution is integral, thereby potentially reducing the number

of nodes expanded. In practice, however, we find that early branching considerably

reduces the time spent per branch-and-bound node.

5.3 Experimental work

In this section, we report on early computational experiments. In Section 5.3.1

we describe the instance sets used. In Section 5.3.2 we compare the results of our

branch-and-price with the current best methods in the literature, which solve Hess
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et al. [108]’s model by treating connectivity with flow constraints [222], and sub-

tour elimination constraints [197]. Next, in Section 5.3.3 we compare lower bounds

obtained at the root node of branch-and-bound for the different formulations, and

discuss how lower bounds could be improved in our case. Then, in Section 5.3.4 we

present statistics on column generation and analyze its main issues and bottlenecks,

then speculate on how they might be addressed.

We ran all experiments on a PC with a 12-core AMD Ryzen 9 3900X processor

and 32 GB of main memory, running Ubuntu Linux 20.04. For each test we set a

time limit of 30 minutes, and use only one thread. Our algorithms were coded in

C++ and compiled with GCC 9.3.0 with maximum optimization. For solving the MIP

models we use CPLEX 20.1.0. Since our algorithm depends little on randomization

(namely, to generate initial primal solutions and in greedy multistart pricing, where

the randomization is amortized since it is called many times), we ran each test with

a fixed random seed.

In all tests, as a preprocessing step we apply the Lagrangean-based variable fixing

approach of Validi et al. [222], which we described in Section 2.4.1.5. As we will

see in the next section, it fixes a significant percentage (over 80%) of Hess model

variables in all instances. For a fair comparison, we apply variable fixing to all algo-

rithm variants we consider in our experiments. To obtain the upper bound needed for

variable fixing we run the location-allocation heuristic of Validi et al. [222], which

we also use as an initial primal solution, as we have mentioned in Section 5.2.2.1.

Since variable fixing depends on solving the LP relaxation of the Hess model, which

is very slow for n⩾ 500, we do not include the runtime for solving the LP in our final

results. Because we use variable fixing in all compared variants, this does not affect

our interpretation of the results.

5.3.1 Test instances

For our tests we use the smaller instance sets SRC and RF, described in Section 3.4.

Since sets SRC and RF were generated for problems of |A| = 3 balancing attributes,

we transform them to single-attribute instances by taking wi = (w1
i +w

2
i +w

3
i )/3.

Additionally, we include two instance sets from a political districting domain in the

United States, introduced by Validi et al. [222]: counties and tracts. These real-world

instances range in size from n= 44 to n= 1115, but generally require fewer districts,

with p = 1 to p = 53. In our experiments, we have removed several trivial instances

of p = 1. For tract-level instances we use a reduced set tracts-R which contains only
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Table 5.1: Test instance data.

Inst. Source # n m p UBh LBL Fix. (%) Cens.

SRC [197] 20 60 101 4 0.08 -2.61 91.4 15
counties [222] 9 77 188 4 0.11 -5.64 82.3 21
SRC [197] 20 80 140 5 0.51 -3.82 81.4 44
SRC [197] 20 100 177 6 0.66 -2.35 84.9 50
SRC [197] 20 120 215 7 0.53 -2.46 83.7 74
SRC [197] 10 150 271 8 0.95 -2.35 84.9 88
SRC [197] 10 200 368 11 1.40 -2.44 81.4 163
RF/DS [190] 20 500 955 10 1.08 -0.51 88.2 258
RF/DT [190] 20 500 950 10 1.15 -0.53 86.8 289
tracts-R [222] 14 667 1,795 4 0.01 -0.13 97.4 50

instances which Validi et al. [222] have solved optimally within 1 hour, since it is

unlikely that our method will be able to solve any of the other instances.

Table 5.1 summarizes data for the instances used. We show, for each instance set

(Inst.) the number of instances (#), the average instance size (n, m and p), the

average initial primal (UBh) and Lagrangean (LBL, computed by Validi et al. [222]’s

variable fixing method) bounds relative to best known lower bound per instance, the

percentage (Fix. (%)) of Hess model variables fixed to zero during pre-processing,

and the number of center (Cens.) variables not fixed to zero by pre-processing. We

see that preprocessing significantly reduces effective instances sizes and fixes most

centers, which are usually the complicating variables in the Hess model. This effect is

more apparent for instance sets tracts-R and counties. We think this is because their

unit topologies are less uniform.

5.3.2 Comparison to other exact approaches

In this section we compare our proposed branch-and-price to the formulations

of Validi et al. [222], which we call “Flow”, and of Salazar-Aguilar et al. [197],

which we call “Subtour”. We solve them using CPLEX. Both formulations include

inequalities (2.12) for strength, and differ in how connectivity is handled: Flow uses

multi-commodity flow constraints (2.27), while Subtour uses subtour elimination

constraints (2.24), which are added as lazy constraints during branch-and-bound.

We have also considered the cutset-based formulation of Validi et al. [222], but as

reported by the authors it performs nearly identically to Flow. This was also corrobo-

rated by our early experimentation, hence we only include Flow in the comparison.

Table 5.2 shows the results. Results for our branch-and-price are shown under
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Table 5.2: Results for the proposed branch-and-price and the current best solutions in
the literature.

Inst. n
Flow Subtour B&P

t LB UB Opt. t LB UB Opt. t LB UB Opt.

SRC 60 0.5 0.00 0.00 20 0.4 0.00 0.00 20 0.8 0.00 0.00 20
counties 77 4.1 0.00 0.00 9 4.0 0.00 0.00 9 190.7 0.00 0.00 9
SRC 80 3.6 0.00 0.00 20 2.0 0.00 0.00 20 165.5 0.00 0.00 20
SRC 100 21.7 0.00 0.00 20 18.4 0.00 0.00 20 348.0 -0.45 0.00 18
SRC 120 9.5 0.00 0.00 20 5.9 0.00 0.00 20 338.7 -0.24 0.00 18
SRC 150 33.6 0.00 0.00 10 54.2 0.00 0.00 10 720.0 -1.19 0.41 7
SRC 200 440.9 -0.26 0.06 8 302.2 0.00 0.00 9 1,457.3 -1.17 1.18 2
RF/DS 500 978.6 -0.34 0.58 11 642.8 0.00 0.10 17 1,800.0 -0.51 1.17 0
RF/DT 500 1,248.0 -0.32 0.39 8 646.4 0.00 0.21 17 1,422.0 -0.37 1.06 0
tracts-R 667 671.8 -0.06 0.00 10 437.7 0.00 0.00 11 1,686.9 -0.13 0.01 1

Avg./Tot. 341.2 -0.10 0.10 136 211.4 0.00 0.03 153 813.0 -0.41 0.38 95

“B&P”. For each method and instance set we show the average running time (t) in

seconds, the average final lower (LB) and upper (UB) bounds relative to the best

known lower bound per instance, and the number of instances solved to optimality

(Opt.).

At a first glance we see that the subtour formulation of Salazar-Aguilar et al. [197]

is a clear winner, finding the best known lower bound in every single run and in less

time, ultimately solving the most instances (153). Flow ranks second at 136 instances,

as it falls short at larger instances of n⩾ 500. Our branch-and-price is able to handle

smaller instances of n ⩽ 100 with high running times, but struggles on larger ones,

and ultimately solves only 95 instances. As we shall see in the next two experiments,

this is caused by a combination of three factors: i) the slow convergence of column

generation, ii) the difficulty in solving the pricing subproblem, and iii) weaker lower

bounds caused by our lack of automatic cutting plane generation.

5.3.3 Comparison of dual bounds

In this experiment we assess empirically the formulation strength of branch-and-

price’s set partitioning reformulation, compared to Flow and Subtour. Table 5.3 shows

the relevant statistics, using data from the experiment of Section 5.3.2. We report, for

each instance set, the average initial heuristic upper bound (UBh), Lagrangean lower

bound (LBL), and Hess LP bound (LBLP), without connectivity constraints. Then, for

each formulation we report the lower bound obtained after solving the root node
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Table 5.3: Empirical comparison of lower bound strengths.

Inst. n UBh LBL LBLP
Flow Subtour B&P

Nd. LBroot Nd. LBroot Nd. LBroot

DU60 60 0.08 -2.61 -2.61 0.6 -0.07 2.5 -0.05 2.7 -0.19
counties 77 0.11 -5.64 -5.64 72.4 -2.26 305.0 -2.36 37.8 -2.27
DU80 80 0.51 -3.82 -3.82 41.1 -1.48 43.7 -1.47 86.7 -1.54
DU100 100 0.66 -2.35 -2.35 21.7 -1.13 13.9 -1.11 190.5 -1.01
DU120 120 0.53 -2.46 -2.46 61.3 -0.90 94.7 -0.92 125.2 -0.75
DU150 150 0.95 -2.35 -2.35 14.1 -1.45 21.9 -1.48 135.3 -1.37
DU200 200 1.40 -2.44 -2.44 44.0 -1.41 58.5 -1.44 45.0 -1.25
DS 500 1.08 -0.51 -0.51 — -0.46 — -0.46 — -0.51
DT 500 1.15 -0.53 -0.53 — -0.46 — -0.45 — -0.37
tracts-R 667 0.01 -0.13 -0.13 0.0 -0.12 0.0 -0.09 1.0 -0.13

Avg./Tot. 0.65 -2.29 -2.29 31.9 -0.97 67.5 -0.98 78.0 -0.94

of branch-and-bound (LBroot) and the average number of branch-and-bound nodes

(Nd.), for instances which were solved by all variants. All upper and lower bounds

are relative to the best known lower bound.

First, we see that Lagrangean bounds and Hess LP bounds are identical in all

instances. This was unexpected, considering that reduced cost analysis in the La-

grangean yields substantially more variable fixes than in the Hess LP, in the method

of Validi et al. [222]. We believe a further investigation of this phenomenon is war-

ranted. It might be interesting, for instance, to compare optimal bounds between all

possible combinations of dualized constraints among (2.10b) to (2.10e).

We also see that branch-and-price’s LBroot is better than LBLP. This is expected,

since as we discussed in Section 2.4.1.3 the set partitioning formulation is tighter

than Hess’s. Branch-and-price also generally has stronger root bounds than Flow and

Subtour when solved with CPLEX, but not always; see e.g. instance sets DU80 and

DU100. This is likely because CPLEX uses generic cutting planes to strengthen dual

bounds. Looking at the number of branch-and-bound nodes expanded, we see this

effect accentuated in practice as both Subtour and Flow actually expand fewer nodes

than branch-and-price, despite having weaker formulations. This shows that a tighter

formulation alone does not compensate a lack of strong cuts, and marks a clear path

for future improvement of our method. Another possibility is that this difference

could be due to branching and node expansion strategies.

Comparing Flow and Subtour, we see that Flow expands fewer than half the nodes

of Subtour, but spends significantly more effort in each node, as indicated by running

times in Table 5.2. Because Subtour has no connectivity cuts at the root, its root



187

Table 5.4: Column generation statistics.

Inst. n Iter. Cols. tLP tmh tex tprf colpl colgr colmh colex

DU60 60 18 7.4 1.2 20.2 19.7 8.0 3.5 78.7 13.8 4.0
counties 77 242 3.3 4.3 39.4 45.1 1.8 14.4 51.0 29.3 5.3
DU80 80 31 8.1 3.2 35.4 42.0 3.2 21.3 55.0 17.3 6.4
DU100 100 64 7.1 5.6 34.9 38.9 2.5 19.1 55.5 17.7 7.8
DU120 120 44 10.5 6.9 37.4 38.1 2.7 24.7 52.4 17.0 5.9
DU150 150 51 7.9 8.5 35.7 33.7 1.7 26.8 50.3 17.0 5.9
DU200 200 21 5.5 11.0 31.5 37.1 1.3 40.9 40.6 13.2 5.4
DS 500 330 94.4 39.4 1.0 52.8 0.0 0.0 93.9 6.0 0.0
DT 500 160 68.3 72.1 6.3 7.9 0.2 1.1 81.7 13.6 3.5
tracts-R 667 714 154.4 79.8 13.4 5.6 0.0 0.0 89.8 9.8 0.4

bound is (expectedly) worse than Flow’s, on average. Strangely, this was not the case

for instance sets DU80 and DU100. For some reason, CPLEX’s presolve was able to

strengthen the model better when flow constraints were not present.

5.3.4 Column generation analysis

In this section, we analyze how the different components of column generation

contribute to convergence and running time. In early experiments, we realized that

different parts of column generation were the bottleneck depending on the instance.

Our goal in this experiment is to highlight the major issues that make branch-and-

price not competitive, and to reflect on how they might be addressed.

In Table 5.4 we display some statistics using data from the experiment of Sec-

tion 5.3.2. For each instance set we show averages of the number of column gen-

eration iterations per branch-and-bound node (Iter.), the number of new columns

added per iteration (Cols.), and the running times (relative to the total running time

of branch-and-price, in percent) for solving the RLMP with Simplex (tLP), the pric-

ing matheuristic of Section 5.2.2.4 (tmh), exact pricing (tex), and of the last column

generation iteration (tprf), where exact pricing is required to obtain an optimality

proof for the RMP. We also show the relative number of columns (in percent) which

were added by each of the four methods outlined in Section 5.2.2: searching the

global column pool (colpl), greedy heuristic (colgr), matheuristic (colmh) and exact

pricing (colex).

For smaller instances (n ⩽ 200), we see that the time to solve the RLMP accounts

for less than 10% of running time, as fewer columns are needed to reach optimality.

In larger instances (n ⩾ 500), however, the number of columns and consequently
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the LP time increase drastically. Since the RLMP is highly degenerate, in these large

instances we find that new columns rarely enter the base, even if they have negative

reduced costs. This leads to plateau periods during column generation where the

solution value υ of the RLMP remains unchanged despite a very large number of

columns being added. In nearly all instances of data sets DS, DT and tracts-R, υ

never improved from the initial primal solution, and negative reduced cost columns

continued to be added for several iterations until the LP became over encumbered

and the time limit was reached. This phenomenon was also recognized by Gurnee and

Shmoys [100], who suggest that it is caused by the fact that the columns generated

rarely “fit” together to form p-partitions of V, especially in large instances.

In instances that branch-and-price consistently solves (n⩽ 120), most of the com-

putational effort is split between the matheuristic and exact pricing, each taking about

30 to 40% of the total running time. This is despite these methods producing only

about a quarter of all columns. However, looking at column tprf we see that the cost

to prove optimality is rather small in comparison to tex, usually less than 5% of the

total running time. This indicates that most exact pricing runs could be avoided by

having a better heuristic. Moreover, we see the global column pool and greedy heuris-

tic work as intended, as they are extremely fast and combined generate over 70% of

all columns, on average.

5.4 Conclusion and planned work

In this chapter we presented our ongoing work on an exact branch-and-price algo-

rithm for the p-Median Districting Problem. We have extended the heuristic of Mehro-

tra et al. [155], which uses branch-and-price on a set partitioning formulation, with

several techniques from the literature. These techniques include i) a layered approach

that uses heuristics and a column pool to find columns quickly, ii) an exact solution to

the pricing problem which uses flow constraints to model connectivity, iii) the use of

early branching during column generation, including Lagrangean dual bounding, and

iv) the use of variable fixing techniques from the literature as pre-processing step.

In computational experiments we find that our method generally finds better lower

bounds as it uses a tighter formulation, but solves fewer instances than other ap-

proaches. This is because column generation faces a number of issues, which we

discuss in the following.

First, due to high degeneracy of the RLMP, in large instances column generation is

slow to converge as it requires a huge number of columns to make progress on the
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objective value. Because the RLMP is degenerate, its dual has fewer constraints than

variables and thus admits many optimal solutions. As a consequence, column gener-

ation alternates between these (often distant) dual solutions of equal value without

making progress. A known approach to mitigate this effect, which we intend to in-

vestigate, is dual stabilization [56]. It limits the variation between consecutive dual

solutions through several techniques, lessening the back-and-forth effect.

Another possible solution to the degeneracy issue is to generate sets of columns

that form p-partitions of V, instead of single columns that do not “fit together”. This

would make columns more likely to enter the base and not remain unused. This could

be done, e.g. by changing the pricing subproblem to generate feasible districting plans

such that one or more districts are negative reduced cost columns. This would make

pricing significantly more costly to solve, however. Another way is to use the binary

partitioning approach of Gurnee and Shmoys [100], which recursively partitions the

problem into two smaller subproblems and generates several solutions to each.

Second, as we discussed in Section 5.3.3 our branch-and-price implementation re-

quires more node expansions than CPLEX does for the flow and subtour formulations.

This difference is likely due to a combination of i) better lower bounds obtained

through the automatic generation of valid inequalities, ii) node selection techniques,

iii) branching rules. We will investigate how our method can be improved in these

aspects. In particular, (i) appears to be the most promising, and we will consider valid

inequalities which have been used for similar capacitated location problems such as

lifted cover inequalities [98] and Fenchel cuts [24].

Third, as we saw in Table 5.4, exact pricing consumes almost half the total running

time of branch-and-price, but most calls to it could have been avoided if heuristic

pricing had found a negative reduced cost column. Therefore, a better heuristic could

help to improve running times by up to 30-40%, and possibly more on larger in-

stances. While this will certainly help, it is however clear that this speed up alone will

not be sufficient to make branch-and-price competitive.

Last, we will experiment with enforcing connectivity by subtour-based lazy con-

straints, as in Salazar-Aguilar et al. [197], on the master problem. Currently, exact

pricing uses flow constraints to ensure every single column is connected; unfortu-

nately, because of degeneracy, this means significant effort is invested into generating

connected columns that end up not being used. To enforce connectivity lazily in the

master, rather than fully during pricing, would make exact pricing considerably eas-

ier to solve. As a downside, this enlarges significantly the space of feasible columns,

which could slow down the convergence of column generation. Another issue might
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be that we will not be able to stop branching once an integer solution is found, since

it could have disconnected columns. In this case, we could use the heuristic of Validi

et al. [222] to repair disconnectivity, which was effective in their method.
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