Parliament Seating Ideas

Alex Gliesch

October 21, 2021

1 Base model

The model proposed by Vangerven et al. [\[3\]](#page-2-0) is:

$$
\text{maximize} \qquad \sum_{p \in P, e \in E} w_e y_{ep} \tag{1a}
$$

subject to X xip ≤ 1 ∀i ∈ V, (1b)

$$
\sum_{i \in V}^{\mathfrak{p} \in P} x_{ip} = \beta^{\mathfrak{p}} \qquad \qquad \forall \mathfrak{p} \in P, \qquad (1c)
$$

$$
\forall p \in P, e \in E, i \in e,
$$
\n
$$
\forall p \in P, e \in E, i \in e,
$$
\n
$$
\forall p \in P, \quad (1d)
$$
\n
$$
\forall p \in P, \quad (1e)
$$

$$
\sum_{i \in F} x_{ip} \ge r^r \qquad \qquad \forall p \in P, \qquad (1e)
$$

 x induces connected components, $(1f)$

$$
x_{ip} \in \{0, 1\} \qquad \forall i \in V, p \in P, \qquad (1g)
$$

$$
y_{ep} \in \{0, 1\} \qquad \forall e \in E, p \in P. \qquad (1h)
$$

Here, y assigns edges to parties, x assigns vertices to parties, β^p is the target size (in number of vertices) of party p , r^p is the target number of front-row seats of party p , and $\mathsf{R}\subseteq\mathsf{V}$ is the set of front-row seats.

2 Lagrangean-based fixing

If we relax constraints [\(1b\)](#page-0-0) and [\(1d\)](#page-0-1), the objective function of the corresponding Lagrangean with multiplier vectors α and λ , respectively, is:

$$
\sum_{\substack{p \in P, e \in E \\ i \in V}} w_e y_{ep} + \sum_{i \in V} \alpha_i (1 - \sum_{p \in P} x_{ip}) + \sum_{\substack{p \in P, e \in E, i \in e \\ i \in e}} \lambda_{ep}^i (x_{ip} - y_{ep}) \\ = \sum_{i \in V} \alpha_i + \sum_{p \in P, e \in E} y_{ep} (w_e - \sum_{i \in e} \lambda_{ep}^i) - \sum_{i \in V, p \in P} \alpha_i x_{ip} + \sum_{p \in P, e \in E, i \in E} \lambda_{ep}^i x_{ip}.
$$

Expression $\sum_{p \in P, e \in E, i \in E} \lambda_{ep}^{i} x_{ip}$ can be written as $\sum_{i \in V, p \in P} x_{ip} \sum_{e \in N(i)} \lambda_{ep}^{i}$, and the above becomes

$$
\sum_{i\in V}\alpha_i+\sum_{p\in P, e\in E}y_{ep}(w_e-\sum_{i\in e}\lambda^i_{ep})+\sum_{p\in P, i\in V}\chi_{ip}(\sum_{e\in N(i)}\lambda^i_{ep}-\alpha_i).
$$

Let $\hat{w}_{ep} = w_e - \sum_{i \in e} \lambda_{ep}^{i}$ for $e \in E$, $p \in P$, $\hat{w}_{ip} = \sum_{e \in N(i)} \lambda_{ep}^{i} - \alpha_i$ for $i \in V$, $p \in P$, and $\hat{\alpha} = \sum_{i \in V} \alpha_i$ be constants wrt. Lagrangean multiplier vectors α, λ . Then, ignoring connectivity constraints [\(1f\)](#page-0-2), the Lagrangean relaxation becomes:

subje

$$
\mathbf{maximize} \qquad \hat{\alpha} + \sum_{p \in P, e \in E} \hat{w}_{ep} y_{ep} + \sum_{p \in P, i \in V} \hat{w}_{ip} x_{ip} \qquad (2a)
$$

$$
\text{ct to} \qquad \sum_{i \in V} x_{ip} = \beta^p \qquad \qquad \forall p \in P, \qquad (2b)
$$

$$
\sum_{i \in F} x_{ip} \ge r^p \qquad \forall p \in P, \qquad (2c)
$$

$$
x_{ip} \in \{0, 1\} \qquad \qquad \forall i \in V, p \in P, \qquad (2d)
$$

$$
y_{ep} \in \{0, 1\} \qquad \forall e \in E, p \in P. \qquad (2e)
$$

This can be decomposed into p independent subproblems. Each subproblem can be solved in $O(m + n \log n)$ time by setting $y_{ep} = [\hat{w}_{ep} \ge 0]$ and then selecting, for each party p, first r^p vertices from F with maximum \hat{w}_{p} , followed by $\beta^p - r^p$ not-yet-selected vertices from V with maximum \hat{w}_{p} , and setting $x_{p} = 1$ for these vertices.

Let an optimal solution of cost U to [\(2\)](#page-1-0) be denoted as (x^*, y^*) , and let $S_p = \{i \in V \mid x^*_{ip} = \emptyset\}$ 1. We can then compute upper bounds U_{tp}^x and U_{ep}^y obtained by tentatively flipping x_{ip}^* or y_{ep}^* as follows:

$$
U_{ip}^x=\begin{cases}U+\hat{w}_{ip}-\begin{cases}\infty&\text{if }|S_p|=r^p\\ \min_{j\in S_p}\hat{w}_{jp}&\text{if }|S_p\cap F|+[\textbf{i}\in F]>r^p&\text{if }x_{ip}^* = 0\\ \min_{j\in S_p\setminus F}\hat{w}_{jp}&\text{otherwise}\\ U-\hat{w}_{ip}+\begin{cases}-\infty&\text{if }|F|=r^p\\ \max_{j\in V\setminus S_p}\hat{w}_{jp}&\text{if }|S_p\cap F|-[\textbf{i}\in F]\geq r^p&\text{if }x_{ip}^*=1\\ \max_{j\in F\setminus S_p}\hat{w}_{jp}&\text{otherwise}\end{cases}\end{cases}
$$

$$
U_{ep}^y=\begin{cases} U+\hat w_{ep} & \text{if } y_{ep}^*=0 \\ U-\hat w_{ep} & \text{if } y_{ep}^*=1. \end{cases}
$$

Given some lower bound L to model [\(1\)](#page-0-3) (obtained e.g. by a heuristic), for any $i \in V, p \in P$ such that $U_{ip}^{\chi} < L$ we can fix $x_{ip} = 1 - x_{ip}^*$ in the original MIP. Similarly, for any $e \in E$, $p \in P$ such that $U_{ep}^{ij} < L$ we fix $y_{ep} = 1 - y_{ep}^*$. Note that each U_{ip}^x can be computed in amortized constant time by pre-computing, for each p, the results of sub-cases 2 and 3.

3 Alternative formulation minimizing cut edges

Alternatively, we can write model [\(1\)](#page-0-3) in order to minimize the cost of cut edges, since the solution on the x variables is equivalent. Borrowing linking constraints $(3b)$ from Validi et al. [\[2\]](#page-2-2), we have:

minimize
\n
$$
\sum_{p \in P, e \in E} w_e \tilde{y}_{ep}
$$
\n
$$
\text{subject to} \quad (1b), (1c), (1f), (1e), (1g),
$$
\n
$$
x_{ip} - x_{jp} \leq \tilde{y}_{ep} \qquad \forall p \in P, e = \{i, j\} \in E, \quad (3b)
$$
\n
$$
\tilde{y}_{ep} \in \{0, 1\} \qquad \forall e \in E, p \in P, \quad (3c)
$$

where \tilde{y}_{ep} is equivalent to $1 - y_{ep}$ and denotes whether an edge it not part of party p.

In practice, this model seems to fare a little better than the original model. Validi et al. [\[2\]](#page-2-2) also suggest that adding the complementary constraints $x_{jp} - x_{ip} \leq \tilde{y}_e$ to constraints [\(3b\)](#page-2-1) could improve LP bounds, but in practice it seems this doesn't help much.

We can also write a Lagrangean objective for this formulation, relaxing [\(1b\)](#page-0-0) and [3b:](#page-2-1)

$$
\sum_{\substack{p \in P, e \in E}} w_e \tilde y_{ep} + \sum_{i \in V} \alpha_i (1 - \sum_{p \in P} x_{ip}) + \sum_{\substack{p \in P, e = \{i,j\} \in E \\ i \in V}} \mu_{ep} (\tilde y_{ep} - x_{ip} + x_{jp}) \\ = \sum_{p \in P, e \in E} \tilde y_{ep} (w_e + \mu_{ep}) + \sum_{i \in V} \alpha_i - \sum_{i \in V} \sum_{p \in P} x_{ip} (\alpha_i + \sum_{e = \{i,j\} \in N(i)} \mu_{ep} (2 * [i > j] - 1));
$$

Letting $\tilde{w}_{ep} = w_e + \mu_{ep}$ for $e \in E$, $p \in P$, $\tilde{w}_{ip} = \alpha_i + \sum_{e=[i,j] \in N(i)} \mu_{ep}(2 \times [i > j] - 1)$ for $i \in V, p \in P$ and $\tilde{\alpha} = \sum_{i \in V} \alpha_i$, we can write the Lagrangean as:

$$
\text{minimize} \qquad \tilde{\alpha} + \sum_{p \in P, e \in E} \tilde{w}_{ep} y_{ep} + \sum_{p \in P, i \in V} \tilde{w}_{ip} x_{ip} \tag{4a}
$$

$$
subject to \t(2b), (2c), (2d), (2e) \t(4b)
$$

The solution is analogous to that of model [\(2\)](#page-1-0), but we select smallest instead of largest.

It would be interesting to see whether linking constraints [\(3b\)](#page-2-1) are stronger than [\(1d\)](#page-0-1), and how we can translate them directly to the maximization model.

4 Connectivity

Vangerven et al. [\[3\]](#page-2-0) use multi-commodity flow (MCF) constraints to model connectivity, but Hojny et al. [\[1\]](#page-2-3) propose a single-commodity flow (SCF) formulation. In practice, SCF seems better.

References

- [1] Christopher Hojny et al. "Mixed-integer programming techniques for the connected maxk-cut problem". In: Mathematical Programming Computation 13.1 (2021), pp. 75–132.
- [2] Hamidreza Validi et al. "Political districting to minimize cut edges". In: Optimization Online (2021) . URL: http://www.optimization-online.org/DB_HTML/2021/04/ [8349.html](http://www.optimization-online.org/DB_HTML/2021/04/8349.html).
- [3] Bart Vangerven et al. "Parliament seating assignment problems". In: European Journal of Operational Research (2021).