publications
-
Alex Gliesch and Marcus Ritt (2022). A new heuristic for finding verifiable k-vertex-critical subgraphs. Journal of Heuristics, 28:61–91. (GitHub)
-
Alex Gliesch and Marcus Ritt (2021). A hybrid heuristic for the maximum dispersion problem. European Journal of Operational Research, 288(3):721–735. (GitHub)
-
Alex Gliesch, Marcus Ritt, Arthur H. S. Cruz, Mayron C. O. Moreira (2020). A hybrid heuristic for districting problems with routing criteria. IEEE Congress on Evolutionary Computation (CEC). (PDF) (Code) (Results)
-
Alex Gliesch, Marcus Ritt, Arthur H. S. Cruz, Mayron C. O. Moreira (2020). A heuristic algorithm for districting problems with similarity constraints. IEEE Congress on Evolutionary Computation (CEC). (PDF) (Code)
-
Alex Gliesch and Marcus Ritt (2019). A generic approach to districting with diameter or center-based objectives. Genetic and Evolutionary Computation Conference (GECCO). Best paper candidate. (PDF) (Code) (Results)
-
Alex Gliesch, Marcus Ritt, Mayron C. O. Moreira (2018). A multistart alternating tabu search for commercial districting. European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP). Best paper candidate. (GitHub)
-
Alex Gliesch, Marcus Ritt, Mayron C. O. Moreira (2017). A genetic algorithm for fair land allocation. Genetic and Evolutionary Computation Conference (GECCO). (GitHub)
-
Alex Gliesch and Marcus Ritt (2017). Solving Atomix with pattern databases. 5th Brazilian Conference on Intelligent Systems (BRACIS). (GitHub)
Theses
-
Alex Gliesch (2023). Heuristic algorithms for districting problems. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul. (PDF)
-
Alex Gliesch (2018). A genetic algorithm for fair land allocation. Master’s Thesis, Universidade Federal do Rio Grande do Sul. (PDF)
-
Alex Gliesch (2015). Solving Atomix exactly. Bachelor’s Thesis, Universidade Federal do Rio Grande do Sul. (PDF)